A fuzzy random forest
نویسندگان
چکیده
When individual classifiers are combined appropriately, a statistically significant increase in classification accuracy is usually obtained. Multiple classifier systems are the result of combining several individual classifiers. Following Breiman’s methodology, in this paper a multiple classifier system based on a “forest” of fuzzy decision trees, i.e., a Fuzzy Random Forest, is proposed. This approach combines the robustness of multiple classifier systems, the power of the randomness to increase the diversity of the trees, and the flexibility of fuzzy logic and fuzzy sets for imperfect data management. Various combination methods to obtain the final decision of the multiple classifier system are proposed and compared. Some of them are weighted combination methods which make a weighting of the decisions of the different elements of the multiple classifier system (leaves or trees). A comparative study with several datasets is made to show the efficiency of the proposed multiple classifier system and the various combination methods. The proposed multiple classifier system exhibits a good accuracy classification, comparable to that of the best classifiers when tested with conventional data sets. However, unlike other classifiers, the proposed classifier provides a similar accuracy when tested with imperfect datasets (with missing and fuzzy values) and with datasets with noise.
منابع مشابه
Weighted Decisions in a Fuzzy Random Forest
A multi-classifier system obtained by combining several individual classifiers usually exhibits a better performance (precision) than any of the original classifiers. In this work we use a multi-classifier based on a forest of randomly generated fuzzy decision trees (Fuzzy Random Forest), and we propose a new method to combine their decisions to obtain the final decision of the forest. The prop...
متن کاملInterpreting the Fuzzy Semantics of Natural-Language Spatial Relation Terms with the Fuzzy Random Forest Algorithm
Naïve Geography, intelligent geographical information systems (GIS), and spatial data mining especially from social media all rely on natural-language spatial relations (NLSR) terms to incorporate commonsense spatial knowledge into conventional GIS and to enhance the semantic interoperability of spatial information in social media data. Yet, the inherent fuzziness of NLSR terms makes them chall...
متن کاملNew Approach for Classification and Learning Using Fuzzy Random Forest
In machine learning system different types of approaches, machine learning strategies have applications are related sentiment analysis, classification approaches, data mining etc. Irregular Forest has huge capability of turning into a prevalent method for future classifiers in light of the fact that its execution has been observed to be practically identical with troupe strategies sacking and b...
متن کاملUsing Random Forests and Fuzzy Logic for Automated Storm Type Identification
This paper discusses how random forests, ensembles of weakly-correlated decision trees, can be used in concert with fuzzy logic concepts to both classify storm types based on a number of radar-derived storm characteristics and provide a measure of “confidence” in the resulting classifications. The random forest technique provides measures of variable importance and interactions, as well as meth...
متن کاملFuzzy K-mean Clustering Via Random Forest For Intrusiion Detection System
Due to continuous growth of the internet technology, there is need to establish security mechanism. So for achieving this objective various NIDS has been propsed. Datamining is one of the most effective techniques used for intrusion detection. This work evaluates the performance of unsupervised learning techniques over benchmark intrusion detection datasets. The model generation is computation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 51 شماره
صفحات -
تاریخ انتشار 2010